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1. Introduction

Mathematical modeling of phenomena is a very valuable way of describing phenomena
occuring in nature and being a result of human activity. In the study of random phe-
nomena we use statistical and probabilistic tools, therefore it is important to be able to
determine the distribution and parameters of the tested feature on the basis of a sam-
ple from the studied population. Quantiles are a useful tool in many fields of science,
especially economics and finance, where one of the most popular risk measures, the VaR
(Value at Risk) measure, is based on the definition of the quantile. If {Yk, k ≥ 1} is a
strictly stationary dependent process with marginal distribution function F , then 1 − p

level VaR is defined as
V aRp = inf{x : F (x) ≥ p}

for positive p close to 0. The estimation of quantiles is a popular topic in modern statistics
researches.

Let {Xn, n ≥ 1} be a sequence of identically distributed random variables defined on
a fixed probability space (Ω,F ,P) and a distribution function F . The p-th quantile of F

is defined as Qp = inf{x : F (x) ≥ p}, where 0 < p < 1. Let Fn(x) =
1

n

n
∑

i=1

I[Xi ≤ x],

x ∈ R, n ≥ 1 be the empirical distribution function, Qn,p = inf{x : Fn(x) ≥ p} be the
sample p-th quantile. We put Qn,p = Xn,⌊np⌋+1, where (Xn,1, Xn,2, ..., Xn,n) is the ordered
sample of (X1, ..., Xn) and ⌊x⌋ denotes integer part of x.

Bahadur [1] first established an elegant representation for sample quantile by means of
empirical distribution function based on independent and identically distributed samples.

Theorem 1.1. [1] Let 0 < p < 1 and {Xn, n ≥ 1} be a sequence of independent identically
distributed random variables with distribution function F . Assume that F has at least two

Preprint submitted to May 22, 2022



317

Advances in Science and Technology Research Journal 2022, 16(3), 316–330

derivatives at some neighborhood of Qp and F ′(Qp) = f(Qp) > 0. Then

Qn,p = Qp −
Fn(Qp)− p

f(Qp)
+O(n− 3

4 log n)) a.s. (1)

In many statistical models the elements in the sample are not always independent.
Thus the assumption of independence should be replaced by the assumption that there is
some structure of dependence in the sample. Hence, many researchers are investigating
the Bahadur representation for sample quantiles in dependent samples. In papers [2], [3],
[4], [5] and [6] ϕ-mixing sequences were analyzed, in [7], [8] and [9] α-mixing sequences
were investigated. In [10] NA sequences and in [11] NOD sequences were discussed.

The aim of this article is to check whether the results obtained in the previously
mentioned papers are still true in the case of ρ∗-mixing sequence of random variables.

Definition 1.1. A sequence of random variables {Xn, n ≥ 1} is called ρ∗-mixing, if the
mixing coefficient

ρ∗(n) = sup{ρ(S, T ):S, T ⊂ N, dist(S, T ) ≥ n} → 0

as n → ∞, where

ρ(S, T ) = sup

{ |Cov(X, Y )|
√

V ar(X)V ar(Y )
:X ∈ L2(σ(S)), Y ∈ L2(σ(T ))

}

,

dist(S, T ) = min
i∈S,j∈T

|j − i| and σ(S) and σ(T ) are the σ-fields generated by {Xi, i ∈ S}
and {Xj, j ∈ T}, respectively.
Example 1.1. Let {ǫn} be a sequence of i.i.d. random variables with zero mean and

finite variance. Define Xn =
m
∑

k=0

akǫn−k for some positive integer m and constants ak,

k = 0, 1, ...,m. Then {Xn} is known as a moving average process with older m. It can be
easily verified that {Xn} is a ρ∗-mixing process.

Example 1.2. Let {Xn, n ≥ 1} be a strictly stationary, finite-state, irreducible and aperi-
odic Markov chain. Then it is a ρ∗-mixing process with ρ∗(k) = o(e−Ck) for some C > 0.

Remark 1.1. Note that increasing functions defined on disjoint subset of a ρ∗-mixing
field {Xk, k ∈ Nd} with mixing coefficients ρ∗(s) are also ρ∗-mixing with coefficients not
greater that ρ∗(s).

Numerous authors established a number of limit results for ρ∗-mixing sequences of
random variables. For example in [12] the central limit theorem was presented. In [13],
[14] and [15] the moment inequalities were obtained and in [16] the complete convergance
of weighted sums for ρ∗-mixing sequences of random variables was investigated.

The following properties of ρ∗-mixing structures presented as lemmas will be significant
in our subsequent discussions.

Lemma 1.2. [17] Let q ≥ 2 and {Xn, n ≥ 1} be a sequence of ρ∗-mixing random variables
with EXn = 0 and E|Xn|q < ∞ for every n ≥ 1. The for all n ≥ 1,

E max
1≤m≤n

∣

∣

∣

∣

m
∑

k=1

Xk

∣

∣

∣

∣

q

≤ Cq

{ n
∑

k=1

E|Xk|q +
(

n
∑

k=1

EX2
k

)

q

2

}

,

where Cp > 0 depends only on q and the ρ∗-mixing coefficients.

2
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Lemma 1.3. Let {Xn, n ≤ 1} be a ρ∗-mixing sequence of random variables with finite

variances, p and q be two integers. Let ηl =
∑(l−1)(p+q)+p

i=(l−1)(p+q)+1Xi for 1 ≤ l ≤ k. Then

∣

∣

∣

∣

E exp
(

i

k
∑

l=1

tlηl

)

−
k
∏

l=1

E exp(itlηl)

∣

∣

∣

∣

≤ 4
∑

1≤l<j≤k

|tl||tj|
{

− Cov(ηl, ηj) + 16ρ∗(q)(Var(ηl))
1
2 (Var(ηj))

1
2

}

.

Remark 1.2. Based on Zhang [19], above Lemma is the special case of Theorem 3.3.

Lemma 1.4. [6] Suppose that {ξn, i ≥ 1} and {ηn, i ≥ 1} are two sequences of random
variables. Let {βn, n ≥ 1} be a positive constant sequence with βn → 0, as n → ∞. If
sup−∞<u<∞ |Fξn(u)− Φ(u)| ≤ Cβn, then for any ε > 0,

sup
−∞<u<∞

|Fξn+ηn(u)− Φ(u)| ≤ C[βn + ε+ P (|ηn| > ε)].

2. Main results

Let us consider the Bahadur representation of sample quantiles when the sample is
taken from a ρ∗-mixing structure population.

Theorem 2.1. Let {Xn, n ≥ 1} be a sequence of ρ∗-mixing random variables with a
common distribution function F and quantile Qp. Assume that F possesses a positive
continuous density f in some neighborhood Dp of Qp such that

0 < sup{f(x); x ∈ Dp} < ∞. (2)

Then for any δ > 1
4

P
(

sup
x∈In

|Fn(x)− F (x)− (Fn(Qp)− p)| = O(n− 3
4
+δ), n → ∞

)

= 1,

where In = [Qp − c0n
− 1

2
+δ, Qp + c0n

− 1
2
+δ] for some c0 > 0.

Proof. Let {an, n ≥ 1} and {bn, n ≥ 1} be two sequences defined as follows

an = c0n
− 1

2
+δ for some c0 > 0, bn = ⌊n 1

4 ⌋+ 1

and
Gn(x) = Fn(x)− Fn(Qp)− F (x) + p.

Then, for each n ∈ N and any integer j we define

ηj,n = Qp + janb
−1
n , αj,n = F (ηj+1,n)− F (ηj,n) and Jj,n = [ηj,n, ηj+1,n].

Note that Fn and F are nondecreasing functions. Hence we get for x ∈ Jj,n

Gn(x) ≤ Fn(ηj+1,n)− Fn(Qp)− F (ηj,n) + p ≤ Gn(ηj+1,n) + αj,n

3
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and
Gn(x) ≥ Fn(ηj,n)− Fn(Qp)− F (ηj+1,n) + p ≥ Gn(ηj,n)− αj,n.

Therefore

sup
x∈In

|Fn(x)− F (x)− (Fn(Qp)− p)| ≤ max
−bn≤j≤bn

{|Gn(ηj,n)|}+ max
−bn≤j≤bn−1

{αj,n}.

By The Mean Value Theorem and (2) we get

αj,n = F (ηj+1,n)− F (ηj,n) ≤ C(ηj+1,n − ηj,n) = Canb
−1
n ≤ Cn− 3

4
+δ.

Hence, we have

∞
∑

n=1

P
(

sup
x∈In

|Fn(x)− F (x)− (Fn(Qp)− p)| ≥ c0n
− 3

4
+δ
)

≤ C

∞
∑

n=1

P
(

max
−bn≤j≤bn

|Gn(ηj,n)| ≥
c0

2
n− 3

4
+δ
)

.

Additionally, we have that

Gn(ηj,n) = Fn(ηj,n)− Fn(Qp)− F (ηj,n) + p =
1

n

n
∑

i=1

(

Y
Qp

i − Y
(j,n)
i

)

where Y
Qp

i = E(I[Xi ≤ Qp]) − I[Xi ≤ Qp] and Y
(j,n)
i = E(I[Xi ≤ ηj,n]) − I[Xi ≤ ηj,n],

−bn ≤ j ≤ bn are ρ∗-mixing random variables.
From Markov’s inequality and Lemma 1.2 that for r > max{2, 5

4δ−1
}

∞
∑

n=1

P
(

sup
x∈In

|Fn(x)− F (x)− (Fn(Qp)− p)| ≥ c0n
− 3

4
+δ
)

≤ C

∞
∑

n=1

bn
∑

j=−bn

P
(

|Gn(ηj,n)| ≥
c0

2
n− 3

4
+δ
)

= C

∞
∑

n=1

bn
∑

j=−bn

P
(

|
n

∑

i=1

(

Y
Qp

i −Y
(j,n)
i

)

| ≥ c0

2
n

1
4
+δ
)

≤ C

∞
∑

n=1

bn
∑

j=−bn

P
(

|
n

∑

i=1

Y
Qp

i |+ |
n

∑

i=1

Y
(j,n)
i | ≥ c0

2
n

1
4
+δ
)

≤ C

∞
∑

n=1

bn
∑

j=−bn

(

P
(

|
n

∑

i=1

Y
Qp

i | ≥ c0

4
n

1
4
+δ
)

+ P
(

|
n

∑

i=1

Y
(j,n)
i | ≥ c0

4
n

1
4
+δ
)

)

≤ C

∞
∑

n=1

bn
∑

j=−bn

[E
(

|∑n
i=1 Y

Qp

i |
)r

(n
1
4
+δ)r

+
E
(

|
∑n

i=1 Y
(j,n)
i |

)r

(n
1
4
+δ)r

]

≤ C

∞
∑

n=1

2bnn
r
4
−δr ≤ C

∞
∑

n=1

n
1
4
+ r

4
−δr < ∞.

4
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The next theorem presents the strong consistency of Qn,p i.e. of an estimator of the
quantile Qp.

Theorem 2.2. Suppose that assumptions of Theorem 2.1 hold. We assume that f ′(x) is
defined in some neighborhood Dp of Qp,

f ′(x) < M, x ∈ Dp. (3)

Then for any 0 < δ < 1
2

P
(

Qn,p −Qp = o(n− 1
2
+δ), as n → ∞

)

= 1. (4)

Proof. We note that
∞
∑

n=1

P
[

|Qn,p −Qp| ≥ εn− 1
2
+δ
]

=
∞
∑

n=1

P
[

Qn,p ≥ Qp + εn− 1
2
+δ
]

+
∞
∑

n=1

P
[

Qn,p ≤ Qp − εn− 1
2
+δ
]

= I1 + I2.

Let ξni = I(Xi ≤ Qp + εn− 1
2
+δ)− F (Qp + εn− 1

2
+δ) for 1 ≤ i ≤ n. Hence, we have

I1 =
∞
∑

n=1

P
{

Qn,p ≥ Qp + εn− 1
2
+δ
}

=
∞
∑

n=1

P
{

n
∑

i=1

I(Xi ≤ Qp + εn− 1
2
+δ) < ⌊np⌋+ 1

}

=
∞
∑

n=1

P
{

n
∑

i=1

ξni < ⌊np⌋+ 1− nF (Qp + εn− 1
2
+δ)

}

. (5)

Using Taylor’s expansion: F (Qp + εn− 1
2
+δ) = p + f(Qp)εn

− 1
2
+δ + o(n− 1

2
+δ) we can

obtain that there exists some constant c(ε) > 0, depending only on ε, such that for a
sufficiently large n

∞
∑

n=1

P
(

n
∑

i=1

ξni < ⌊np⌋+ 1− nF (Qp + εn− 1
2
+δ)

)

≤
∞
∑

n=1

P
(

n
∑

i=1

ξni < −c(ε)n
1
2
+δ
)

(6)

Hence, from (5),(6), Markov’s inequality and Lemma 1.2, for r > max{2, 1
δ
}, we obtain

that

I1 ≤
∞
∑

n=1

P
(

n
∑

i=1

ξni < −c(ε)n
1
2
+δ
)

≤
∞
∑

n=1

P
(
∣

∣

∣

n
∑

i=1

ξni

∣

∣

∣
> c(ε)n

1
2
+δ
)

≤ C

∞
∑

n=1

n−( 1
2
+δ)rE

∣

∣

∣

n
∑

i=1

ξni

∣

∣

∣

r

≤ C

∞
∑

n=1

n−( 1
2
+δ)r

[

(nEξ2n1)
r
2 + nE|ξn1|r

]

≤ C

∞
∑

n=1

n−δr < ∞.

It can be similarly shown that I2 =
∞
∑

n=1

P
[

Qn,p ≤ Qp − εn− 1
2
+δ
]

< ∞.

By the Borel-Cantelli lemma we get thesis (4).

Theorem 2.3. Assume that assumptions of Theorem 2.2 hold. Then for any 0 < δ ≤ 1
4

we have,

P

(

Qn,p = Qp −
Fn(Qp)− p

f(Qp)
+O(n− 3

4
+δ), as n → ∞

)

= 1. (7)

5
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Proof. We have that Fn(Qn,p) = n−1(⌊np⌋ + 1) ≤ p + n−1. Using Taylor’s expansion we
obtain for 0 < θ < 1

F (Qn,p) = p+ f(Qp)(Qn,p −Qp) +
1

2
f ′(Qp + θ(Qn,p −Qp))(Qn,p −Qp)

2.

From (3) and Theorem 2.2 it follows that

|Fn(Qn,p)− F (Qn,p) + f(Qp)(Qn,p −Qp)|

≤ 1

2
|f ′(Qp + θ(Qn,p −Qp))|(Qn,p −Qp)

2 + n−1 = o(n−1+2δ). (8)

By (8) and Theorem 2.1, we get that with probability 1,

|f(Qp)(Qn,p −Qp) + Fn(Qp)− p|

≤ |Fn(Qn,p)− F (Qn,p) + f(Qp)(Qn,p −Qp)|+ |Fn(Qn,p)− F (Qn,p)− (Fn(Qp)− p)|

≤ o(n−1+2δ) + sup
x∈In

|Fn(x)− F (x)− (Fn(Qp)− p)| = O(n− 3
4
+δ),

which gives f(Qp)(Qn,p−Qp)+Fn(Qp)− p = O(n− 3
4
+δ), when n → ∞. Then, we get (7).

Now we focus on uniformly asymptotic normality of the sample quantile for ρ∗-mixing
random variables. We will prove four lemmas which will be necessary in our further
considerations. To this purpose, we will use the methods and notation previously used in
[20] and [6]. Let {pn, n ≥ 1} and {qn, n ≥ 1} be sequences such that for pn → ∞, qn → ∞
as n → ∞ and for sufficiently large n

pn + qn ≤ n, 0 < qnp
−1
n ≤ c < ∞. (9)

Moreover, we assume

p−1
n qn → 0, n− 1

2p
1
2
n → 0,

∞
∑

t=q

ρ∗(t) + ρ∗(qn)np
−1
n → 0.

Put σ2
p := V ar[I(X1 ≤ Qp)] + 2

∞
∑

j=1

Cov[I(X1 ≤ Qp), I(Xj ≤ Qp)] > 0 and

Yni =
P (Xi ≤ Qp)− I(Xi ≤ Qp)√

nσp

.

Note that Yni are also ρ∗- mixing and E|Yni|q ≤ Cn− q

2 .

Put Sn :=
n

∑

i=1

Yni =

√
n(F (Qp)− Fn(Qp))

σp

.

Additionally let

ynm =

m(pn+qn)−qn
∑

i=m(pn+qn)−pn−qn+1

Yni, y′nm =

m(pn+qn)
∑

i=m(pn+qn)−qn+1

Yni.

6
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Then Sn = S ′
n + S ′′

n =
kn
∑

m=1

ynm +
kn
∑

m=1

y′nm, where kn =
⌊ n

pn + qn

⌋

+ 1.

Set

γ1n := p−1
n qn, γ2n :=

n−1
∑

j=1

j

n
ρ∗(j) +

∞
∑

j=n

ρ∗(j),

γ3n :=
∞
∑

t=qn

ρ∗(t), γ4n := n− 1
2p

1
2
n , γ5n :=

(

∞
∑

t=q

ρ∗(t) + ρ∗(qn)np
−1
n

)

1
3

.

Lemma 2.4. Let {Xn, n ≥ 1} be a sequence of ρ∗-mixing random variables with a common
distribution function F and a density function f continuous in some neighborhood Dp of
Qp satisfying (2)-(3). Let {pn, n ≥ 1} and {qn, n ≥ 1} satisfy (9). Then for any r ≥ 2,

E|S′′
n|r ≤ C(γ1n)

r
2 (10)

and
P
(

|S ′′
n| > (γ1n)

r
2(1+r)

)

≤ C(γ1n)
r

2(1+r) . (11)

Proof. From Lemma 1.2 we get

E|S′′
n|r = E

∣

∣

∣

∣

kn
∑

m=1

m(pn+qn)
∑

i=m(pn+qn)−qn+1

Yni

∣

∣

∣

∣

r

≤ C
{[

kn
∑

m=1

m(pn+qn)
∑

i=m(pn+qn)−qn+1

EY 2
ni

]
r
2
+

kn
∑

m=1

m(pn+qn)
∑

i=m(pn+qn)−qn+1

E|Yni|r
}

≤ C
{[

(knqn)EY 2
n1

]
r
2
+ knqnE|Yn1|r

}

≤ C
[

np−1
n qnn

−1
]

r
2
= C(γ1n)

r
2 ,

which proves (10). Using Markov inequality and (10) we get (11):

P
(

|S ′′
n| > (γ1n)

r
2(1+r)

)

≤ (γ1n)
− r2

2(1+r)E|S ′′
n|r ≤ C(γ1n)

r
2(1+r) .

Lemma 2.5. Let {Xn, n ≥ 1} be a sequence of ρ∗-mixing random variables with a common
continous distribution function F . Then

|ES2
n − 1| = O(γ2n).

Proof. By definition of Sn we have |ES2
n − 1| =

∣

∣

∣

∣

E{√n[F (Qp)− Fn(Qp)]}2
σ2
p

− 1

∣

∣

∣

∣

.

It suffices to prove that |E{
√
n[F (Qp) − Fn(Qp)]}2 − σ2

p| = O(γ2n).
Put Zi = I(Xi ≤ Qp). Then we obtain

E
{ 1√

n

n
∑

i=1

[I(Xi ≤ Qp)− EI(Xi ≤ Qp)]
}2

= E
{ 1√

n

n
∑

i=1

[Zi − EZi]
}2

7
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=
1

n

[ n
∑

i=1

V arZi + 2
n

∑

j=1

n
∑

j+1

Cov(Zi, Zj)

]

= V arZ1 + 2
n

∑

j=1

(

1− j

n

)

Cov(Z1, Zj).

By the definitions of ρ∗(i) and Zi we have

|Cov(Z1, Zj)| =
|Cov(Z1, Zj)|

(V arZ1)1/2(V arZj)1/2
· (V arZ1)

1/2(V arZj)
1/2

≤ ρ∗(j) · (V arZ1)
1/2(V arZj)

1/2 ≤ Cρ∗(j). (12)

Therefore we can state

|E{
√
n[F (Qp)− Fn(Qp)]}2 − σ2

p|

=
∣

∣

∣
V arZ1 + 2

n
∑

j=1

(

1− j

n

)

Cov(Z1, Zj)− V arZ1 − 2
∞
∑

j=1

Cov(Z1, Zj)
∣

∣

∣

≤ 2
n

∑

j=1

j

n
|Cov(Z1, Zj)|+ 2

∞
∑

j=n+1

|Cov(Z1, Zj)| ≤ C
(

n−1
∑

j=1

j

n
ρ∗(j) +

∞
∑

j=n

ρ∗(j)
)

= C(γ2n).

Put

Bn =
kn
∑

i=1

V ar(yni). (13)

Lemma 2.6. Let {Xn, n ≥ 1} be a sequence of ρ∗-mixing random variables with a com-
mon continuous distribution function F and mixing coefficients {ρ∗(n), n ≥ 1}satisfying
∑∞

n=1 ρ(n) < ∞. Then

|Bn − 1| = O
(

γ
1
2
1n + γ2n + γ3n

)

.

Proof. We will use the following properties.

E(S ′
n)

2 = E(
kn
∑

i=1

yni)
2 =

kn
∑

i=1

E(yni)
2 + 2

kn−1
∑

i=1

kn
∑

j=i+1

Cov(yni, ynj)

= Bn + 2
kn−1
∑

i=1

kn
∑

j=i+1

Cov(yni, ynj). (14)

Hence, from (14) we have

Bn = E(S ′
n)

2 − 2
kn−1
∑

i=1

kn
∑

j=i+1

Cov(yni, ynj). (15)

By (15) we obtain

|Bn − 1| = |E(S ′
n)

2 − 2
kn−1
∑

i=1

kn
∑

j=i+1

Cov(yni, ynj)− 1|

8
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≤ |E(S ′
n)

2 − 1|+ 2
kn−1
∑

i=1

kn
∑

j=i+1

|Cov(yni, ynj)| = I1 + I2. (16)

Using Lemma 2.5 we have

E(S ′
n)

2 = E(Sn − S ′′
n)

2 = ES2
n − 2E(SnS

′′
n) + E(S ′′

n)
2

= E(S ′′
n)

2 − 2E(SnS
′′
n) + 1 +O(γ2n). (17)

Additionally, by (17), Hölder’s inequality and Lemma 2.4 we get

I1 = |E(S ′
n)

2 − 1| ≤ E(S ′′
n)

2 + 2(ES2
n)

1
2 (E(S ′′

n)
2)

1
2 +O(γ2n) = O(γ

1
2
1n + γ2n). (18)

Based on (12) we get

I2 = 2
kn−1
∑

i=1

kn
∑

j=i+1

|Cov(yni, ynj)|

≤ 2
kn−1
∑

i=1

kn
∑

j=i+1

i(pn+qn)−qn
∑

s=i(pn+qn)−pn−qn+1

j(pn+qn)−qn
∑

t=j(pn+qn)−pn−qn+1

|Cov(Yns, Ynt)|.

≤ Cn−1

kn−1
∑

i=1

kn
∑

j=i+1

i(pn+qn)−qn
∑

s=i(pn+qn)−pn−qn+1

j(pn+qn)−qn
∑

t=j(pn+qn)−pn−qn+1

ρ(t− s)

≤ Cn−1

kn−1
∑

i=1

i(pn+qn)−qn
∑

s=i(pn+qn)−pn−qn+1

∞
∑

t=qn

ρ(t) ≤ Cn−1knpn

∞
∑

t=qn

ρ(t) = Cγ3n. (19)

By (16), (18) and (19) |Bn − 1| = O(γ
1
2
1n + γ2n + γ3n).

Remark 2.1. From Lemma 2.6 it follows Bn ≤ C.

Assume that {y∗nm, 1 ≤ m ≤ kn} are independent copies of {ynm, 1 ≤ m ≤ kn}.

Put S∗
n :=

kn
∑

m=1

y∗nm. We see that B∗
n =

kn
∑

m=1

V ar(y∗nm) =
kn
∑

m=1

V ar(ynm) = Bn, and

FS∗
n
(u) = F S∗

n√
B∗
n

( u√
Bn

)

.

Lemma 2.7. Let {Xn, n ≥ 1} be a sequence of ρ∗-mixing random variables with a common
continuous distribution function F . Then

sup
−∞<u<∞

∣

∣

∣
F S∗

n√
B∗
n

(u)− Φ(u)
∣

∣

∣
= O(γ4n) (20)

and
sup

−∞<u<∞

∣

∣

∣
FS′

n
(u)− FS∗

n
(u)

∣

∣

∣
= O(γ4n + γ5n). (21)

9
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Proof. By Berry-Esseen theorem we get

sup
−∞<u<∞

∣

∣

∣
F Tn√

Bn

(u)− Φ(u)
∣

∣

∣
≤ CB

− 3
2

n

kn
∑

m=1

E|y∗nm|3.

Hence, by Remark 2.1 it is sufficient to show that
kn
∑

m=1

E|y∗nm|3 = O(γ4n).

From Lemma 1.2 we get

kn
∑

m=1

E|y∗nm|3 =
kn
∑

m=1

E|ynm|3 =
kn
∑

m=1

E

∣

∣

∣

∣

m(pn+qn)−qn
∑

i=m(pn+qn)−pn−qn+1

Yni

∣

∣

∣

∣

3

≤ Ckn

[

pnE|Yn1|3 + (pnEY 2
n1)

3
2

]

≤ C
n

pn
n− 3

2p
3
2
n = Cn− 1

2p
1
2
n = O(γ4n). (22)

The proof of (20) is completed.
Next, we will use the Esseen inequality (presented in [21])

sup
−∞<u<∞

|FS′
n
(u)− FS∗

n
(u)|

≤
∫ T

−T

∣

∣

∣

∣

χ(t)− ψ(t)

t

∣

∣

∣

∣

dt+ T sup
−∞<u<∞

c
T
∫

− c
T

|FS∗
n
(u+ y)− FS∗

n
(u)|dy = A1 + A2, (23)

where χ(t) = E exp(itS′
n), ψ(t) = E exp(itS∗

n) and T, c > 0.

Note that ψ(t) =
kn
∏

m=1

E exp(ity∗nm) =
kn
∏

m=1

E exp(itynm). By Lemma 1.3, we obtain

|χ(t)− ψ(t)| ≤ 8t2
∑

1≤m<j≤kn

{

− Cov(ynm, ynj) + 16ρ∗(q)(Var(ynm))
1
2 (Var(ynj))

1
2

}

≤ 8t2
{

∑

1≤m<j≤kn

−Cov(ynm, ynj)+
∑

1≤m<j≤kn

16ρ∗(q)(Var(ynm))
1
2 (Var(ynj))

1
2

}

= 8t2{I1+I2}.

(24)
Then by (19) we get

I1 ≤
∑

1≤m<j≤kn

|Cov(ynm, ynj)| ≤ C

∞
∑

t=q

ρ∗(t). (25)

Additionally, using Lemma 1.2 we can show that

I2 ≤ Cρ∗(qn)
∑

1≤m<j≤kn

(Ey2nm)
1
2 (Ey2nj)

1
2 ≤ Cρ∗(qn)k

2
n[pnEY 2

1n + pnEY 2
1n]

≤ Cρ∗(qn)k
2
npnn

−1 ≤ Cρ∗(qn)np
−1
n . (26)

10
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By (24), (25), (26) we can easily show that

A1 =

∫ T

−T

∣

∣

∣

∣

χ(t)− ψ(t)

t

∣

∣

∣

∣

dt ≤ CT 2

( ∞
∑

t=q

ρ∗(t) + ρ∗(qn)np
−1
n

)

. (27)

Moreover, by (20) and Mean Value Theorem we have

sup
u

|FS∗
n
(u+ y)− FS∗

n
(u)| ≤ sup

u

∣

∣

∣
F S∗

n√
B∗
n

(u+ y√
Bn

)

− Φ
(u+ y√

Bn

)∣

∣

∣

+sup
u

∣

∣

∣
Φ
(u+ y√

Bn

)

−Φ
( u√

Bn

)∣

∣

∣
+sup

u

∣

∣

∣
F Tn√

B∗
n

( u√
Bn

)

−Φ
( u√

Bn

)∣

∣

∣
≤ C

(

n− 1
2p

1
2
n + |y|

)

. (28)

By (28) we get immediately that

A2 = T sup
−∞<u<∞

c
T
∫

− c
T

|FS∗
n
(u+ y)− FS∗

n
(u)|dy ≤ C

(

n− 1
2p

1
2
n +

1

T

)

. (29)

Hence, taking (27) and (29) we get

sup
u

|FS′
n(u) − FS∗

n
(u)| ≤ C

(

T 2
(

∞
∑

t=q

ρ∗(t) + ρ∗(qn)np
−1
n

)

+ n− 1
2p

1
2
n +

1

T

)

. (30)

Putting T =
(

∞
∑

t=q

ρ∗(t) + ρ∗(qn)np
−1
n

)− 1
3

in (30) we get (21).

Theorem 2.8. Let {Xn, n ≥ 1} be a sequence of ρ∗-mixing random variables with a com-
mon continuous distribution function F and mixing coefficients {ρ∗(n), n ≥ 1} satisfying
∑∞

n=1 ρ(n) < ∞. Suppose that assumptions (2)-(3) hold. Let sequences {pn, n ≥ 1} and
{qn, n ≥ 1} satisfy (9). Then for any r ≥ 2,

sup
−∞<u<∞

∣

∣

∣

∣

P
(

√
n(Qn,p −Qp)

σp

f(Qp)

≤ u
)

− Φ(u)

∣

∣

∣

∣

= O
(

(γ1n)
r

2(1+r) + γ2n + γ3n + γ4n + γ5n

)

.

Proof. From Theorem 2.3 we have

Qn,p −Qp =
F (Qp)− Fn(Qp)

f(Qp)
as n → ∞.

Hence, it is enough to show that

sup
u

|FSn
(u)− Φ(u)| = O

(

(γ1n)
r

2(1+r) + γ2n + γ3n + γ4n + γ5n

)

.

It follows from Lemma 1.4, for ε = (γ1n)
r

2(1+r) , that

sup
u

|FSn
(u)−Φ(u)| ≤ sup

u
|FS′

n+S′′
n
(u)−Φ(u)| ≤ C[βn+(γ1n)

r
2(1+r) +P (|S ′′

n| > (γ1n)
r

2(1+r) )],

(31)

11
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where based on Lemma 1.4 βn → 0 and sup
u

|FS′
n
(u) − Φ(u)| ≤ Cβn. Using Mean Value

Theorem, we can obtain the form of βn.

sup
u

|FS′
n
(u)−Φ(u)| ≤ sup

u
(|FS′

n
(u)−FS∗

n
(u)|+ |FS∗

n
(u)−Φ

( u√
Bn

)

|+ |Φ
( u√

Bn

)

−Φ(u)|)

≤ sup
u

|FS′
n
(u)−FS∗

n
(u)|+sup

u
|F S∗

n√
Bn

( u√
Bn

)

−Φ
( u√

Bn

)

|+C sup
u

∣

∣

∣

∣

u√
Bn

∣

∣

∣

∣

e−
[u+θ( u√

Bn
−u)]2

2 |
√

Bn−1|.

By properties of function f(x) = |x|e−x2
, one can see that

sup
u

∣

∣

∣

u√
Bn

∣

∣

∣
e−

[u+θ( u√
Bn

−u)]2

2 ≤ C.

Additionally, by Lemma 2.6 and Lemma 2.7 we get

sup
u

|FS′
n
(u)− Φ(u)| ≤ C|Bn − 1|+ sup

u
|FS′

n
(u)− FS∗

n
(u)|+ sup

u
|F S∗

n√
Bn

(u)− Φ(u)|

= C(γ
1
2
1n + γ2n + γ3n + γ4n + γ5n).

Hence
βn = C(γ

1
2
1n + γ2n + γ3n + γ4n + γ5n). (32)

. By assumptions of Theorem 2.8 γin → 0, as n → ∞ for i = 1, 2, 3, 4, 5.
Therefore relations (31), (32) and (11) imply

sup
u

|FSn
(u)− Φ(u)| ≤ γ

1
2
1n + γ2n + γ3n + γ4n + γ5n + (γ1n)

r
2(1+r) + P

(

|S ′′
n| > (γ1n)

r
2(1+r)

)

≤ C
[

γ
1
2
1n + γ2n + γ3n + γ4n + γ5n + (γ1n)

r
2(1+r)

]

≤ C
[

(γ1n)
r

2(1+r) + γ2n + γ3n + γ4n + γ5n

]

.

Remark 2.2. From Theorem 2.8 we get

√
n(Qn,p −Qp)

σp

f(Qp)

d→ N(0, 1) as n → ∞.

Additionally, we can also obtain the following conclusions concerning the rate of normal
approximation for different type of mixing coefficients.

Corollary 2.8.1. Let {Xn, n ≥ 1} be a sequence of ρ∗-mixing random variables with
ρ∗(n) = O(n−α), α > 1 and distribution function F . Suppose that assumptions (2) and
(3) hold. Then for any 0 < κ < 1

6
,

sup
−∞<u<∞

∣

∣

∣

∣

P
(

√
n(Qn,p −Qp)

σp

f(Qp)

≤ u
)

− Φ(u)

∣

∣

∣

∣

= O(n− 1
6
+κ).

Proof. Let pn = ⌊n 2
3 ⌋, qn = ⌊n 1

3 ⌋, α > 1. Let us note that for sufficiently large r ≥ 2 we get

(γ1n)
r

2(1+r) ≤ C[n− 1
3 ]

r
2(r+1) = O(n− 1

6
+κ).

12
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Moreover,

γ2n ≤ C
( 1

n

n
∑

j=1

j1−α +
∞
∑

j=n

j−α
)

≤ Cn1−α = O(n− 1
6
+κ),

γ3n =
∞
∑

t=qn

ρ(t) ≤ Cn
1−α
3 = O(n− 1

6
+κ), γ4n = n− 1

2p
1
2
n ≤ Cn− 1

6 = O(n− 1
6
+κ).

γ5n =
(

∞
∑

t=q

ρ∗(t) + ρ∗(qn)n
1
2p

− 1
2

n

)

1
3 ≤ Cn

1−α
9 = O(n− 1

6
+κ).

Corollary 2.8.2. Let {Xn, n ≥ 1} be a sequence of ρ∗-mixing random variables with
ρ∗(n) = O(e−sn), for some s > 1

2
, a distribution function F and a density function f .

Suppose that assumptions (2) and (3) Then for any 0 < τ < 1
4

sup
−∞<u<∞

∣

∣

∣

∣

P
(

√
n(Qn,p −Qp)

σp

f(Qp)

≤ u
)

− Φ(u)

∣

∣

∣

∣

= O(n− 1
4
+τ ).

Proof. Putting pn = ⌊n 1
2 ⌋, qn = ⌊log n⌋ and using the standard estimations for any

0 < δ < 1
2
we obtain that there exists 0 < τ < 1

4
such that γkn = O(n− 1

4
+τ ) as

k ∈ {2, 3, 4, 5} and (γ1n)
r

2(1+r) = O(n− 1
4
+τ ).

3. Simulation

As already mentioned in the Example 1.1, the moving average process shows a ρ∗-

mixing property. Let ηi
i.i.d.∼ U

(

−
√

3
m+1

,
√

3
m+1

)

, wherem is fixed positive integer. In this

simulation we put m = 10. Then for each i ≥ 1 Xi =
m
∑

k=0

ηi+k is a sequence of ρ∗-mixing

random variables. Using R software we compute 1000 times statistic Un =
√
n(Qn,p−Qp).

According to Corollary 2.2 statistic Un
d→ N

(

0,
( σp

f(Qp)

)2
)

. To verify this we present

Quantile-Quantile plots in Figures 1-4. for different sizes of samples respectively for
n = 200, 500, 1 000, 2 000.

Figure 1: Sample n = 200 Figure 2: Sample n = 500

13
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Figure 3: Sample n = 1000 Figure 4: Sample n = 2000

To ilustrate result in Theorem 2.2 i.e. the consistency of the sample quantile we
compute in every case Mean Squared Error (MSE) and bias for values of Qn,p −Qp.

Table 1: Bias and MSE of sample quantiles

n = 200 n = 500 n = 1000 n = 2000

Bias 0.00562 0.00236 0.00147 0.00082

MSE 0.00097 0.00041 0.00021 0.00010

The table 1 shows that the bias and the MSE decreases as the sample size increases.
This simulation basically agree with the main results established in section 2.

4. Conclusions

In our article, we obtained the Bahadur representation for sample quantiles from a
population with ρ∗-mixing structure, thus we extend the scope of applicability to another
population with a next dependent structure. We showed not only the consistency, the
asymptotic normality and the Berry-Essen bound results about sample quantiles but also
we provide the rate of convergence of sample quantiles to population counterparts. It
was proved that the rate of normal approximation is O(n− 1

6
+κ) for any 0 < κ < 1

6
if

mixing coefficients satisfy ρ(n) = O(n−α) for some α > 1 and O(n− 1
4
+τ ) for any 0 <

τ < 1
4
if mixing coefficients decay exponentially. The presented simulation corresponds to

the proven theorems. The simulation shows that the distribution of Qn,p − Qp statistic
convergances to the normal distribution as the sample size increases and also Qn,p is the
strongly consistent estimator of Qp.
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